
Hashing, Episode 3:

Approximate counting
and searching via hashing

Rasmus Pagh
IT University of Copenhagen

MADALGO SUMMER SCHOOL ON DATA STRUCTURES 2013

Today: Hash and forget

• Approximate counting by consistent
sampling.

• Min-wise hashing.

• Teaser: Locality-sensitive hashing.

Approximate counting

• Suppose the human race decided to
count its number of members.

• Each human throws 6 dice. With
probability ~10-7 a person throws 6x⚅.

• If k people report they threw only ⚅s,
we estimate the population as 107 k.

Counting with a hash function

• Now suppose we want to count first
names - each name only once!

• Idea: “Consistent sampling”
- Hash name x to a value h(x) in [0;1].
- Report any x with h(x) ≤ p.
- Estimate is p-1 times #distinct reports.

Variance of consistent sampling

• Suppose we want to estimate |S|= c, and
include x in the sample with probability p.

• Let X denote the size of the sample.

• X/p is an unbiased estimator: E[X/p] = c.

• Lemma:
If h is 2-wise independent, Var(X/p) ≤ c/p.

Error bound (example)

• Pr[X/p > 2c] < Var(X)/c2 ≤ (cp)-1.

• So: Good bound whp. if cp is big enough.

• But how do we choose a suitable p
without knowing c!?

Min-wise hashing

• Idea: Adjust sampling rate p to keep a fixed
sample size k.

• Possible implementations:
- Store keys with the k smallest hash values.
- Store x with smallest hash value for h1,...,hk.

• If kth smallest hash value is p, estimate that
there are k/p distinct keys.

Min-wise hashing analysis

• Suppose the exact number of keys is c.

• Let

• Lemma. If L0.9k/c < k and L1.1k/c ≥ k then the
estimate k/p is between 0.9c and 1.1c.

• Proof: E[L0.9k/c]=0.9k & tail bound using
that h is pairwise independent implies
L0.9k/c < k holds whp. Same for L1.1k/c.

L

↵

= |{x 2 S | h(x) < ↵}|

Combining min-wise hashes I

• Let A1=minhash(S1), A2=minhash(S2).

• What do A1 and A2 tell us about S1 and S2?

• Can be used to form minhash(S1 ! S2), and
thus estimate |S1 ! S2|.

S1 S2

Combining min-wise hashes II

• Let A1=minhash(S1), A2=minhash(S2).

• What do A1 and A2 tell us about S1 and S2?

• E[|minhash(S1 ! S2) ! minhash(S1) ! minhash(S2)|]
= k |S1 " S2|/|S1 ! S2|.

S1 S2

Thorup, STOC ’13: 2-wise

independence enough for

concentration

Locality-sensitive hashing

• Hashing: Map keys as randomly as possible.

• LSH: Map “similar” keys to similar values,
but avoid collisions of “not so similar” keys.

• Example LSH:
- Hash a bit string x by sampling b of its bits.
- Repeat many times to get collision for
similar keys.

High-dimensional similarity search

• Typically allow approximation factor c:
Looking for a point at distance d from x, we
accept points at distance cd being reported.

• State-of-the-art solutions either:
- Use space around n1+1/c^2, or
- Use query time ~ n2/c, only sublinear for
large enough c.

High-dimensional similarity search

• Commercial break:
I’m looking for X PhD students and
X post-docs starting in 2014+ for a
project on scalable similarity search
at IT University of Copenhagen.

• Here E[X]≈1.5, Var[X]>2.

High-dimensional similarity search

• Commercial break:
I’m looking for X PhD students and
X post-docs starting in 2014+ for a
project on scalable similarity search
at IT University of Copenhagen.

• Here E[X]≈1.5, Var[X]>2.

Some references
• Broder: On the resemblance and containment of documents

http://www.cs.princeton.edu/courses/archive/spring05/cos598E/bib/
broder97resemblance.pdf

• Bar-Yossef et al.: Counting Distinct Elements in a Data Stream
http://www.cs.umd.edu/~samir/498/distinct.ps

• König and Li: Theory and Applications of b-Bit Minwise Hashing
http://research.microsoft.com/pubs/152334/CACM_hashing.pdf

• Cohen: Size-estimation framework with applications to transitive closure and
reachability.
http://www.cs.washington.edu/education/courses/cse521/05wi/papers/
cohen-size-estimation.ps

• Thorup: Bottom-k and Priority Sampling, Set Similarity and Subset Sums with
Minimal Independence
http://arxiv.org/pdf/1303.5479v2.pdf

• Backstrom et al.: Four degrees of separation
 http://people.cam.cornell.edu/~jugander/papers/websci12-fourdegrees.pdf

• Andoni and Indyk: Near-Optimal Hashing Algorithms for Approximate
Nearest Neighbor in High Dimensions
http://people.csail.mit.edu/indyk/p117-andoni.pdf

http://www.cs.princeton.edu/courses/archive/spring05/cos598E/bib/broder97resemblance.pdf
http://www.cs.princeton.edu/courses/archive/spring05/cos598E/bib/broder97resemblance.pdf
http://www.cs.princeton.edu/courses/archive/spring05/cos598E/bib/broder97resemblance.pdf
http://www.cs.princeton.edu/courses/archive/spring05/cos598E/bib/broder97resemblance.pdf
http://www.cs.umd.edu/~samir/498/distinct.ps
http://www.cs.umd.edu/~samir/498/distinct.ps
http://research.microsoft.com/pubs/152334/CACM_hashing.pdf
http://research.microsoft.com/pubs/152334/CACM_hashing.pdf
http://www.cs.washington.edu/education/courses/cse521/05wi/papers/cohen-size-estimation.ps
http://www.cs.washington.edu/education/courses/cse521/05wi/papers/cohen-size-estimation.ps
http://www.cs.washington.edu/education/courses/cse521/05wi/papers/cohen-size-estimation.ps
http://www.cs.washington.edu/education/courses/cse521/05wi/papers/cohen-size-estimation.ps
http://arxiv.org/pdf/1303.5479v2.pdf
http://arxiv.org/pdf/1303.5479v2.pdf
http://people.cam.cornell.edu/~jugander/papers/websci12-fourdegrees.pdf
http://people.cam.cornell.edu/~jugander/papers/websci12-fourdegrees.pdf
http://people.csail.mit.edu/indyk/p117-andoni.pdf
http://people.csail.mit.edu/indyk/p117-andoni.pdf

Nice stuff I did not cover

(Incomplete list, obviously.)
• Tabulation hashing (papers by Patrascu and Thorup).
• Dictionaries where each operation is O(1)

time whp. (Arbitman et al.)

• Simulating full independence (Pagh2).
• Dynamic approximate membership:

Upper and lower bounds (Lovett and Porat; Pagh et al.).
• Simple perfect hashing (Botelho et al.)

